Tuesday 10 January 2017

Moving Average Iir Filter

Nehmen wir den IIR-Filter erster Ordnung an: yn alpha xn (1 - alpha) yn - 1 Wie kann ich den Parameter alpha s. t. Das IIR annähernd so gut wie möglich die FIR, die das arithmetische Mittel der letzten k Proben ist: Wo n in k, infty), was bedeutet, dass der Eingang für den IIR länger als k sein kann und dennoch Id die beste Annäherung der haben Mittelwert der letzten k Eingänge. Ich weiß, die IIR hat unendliche Impulsantwort, daher Im auf der Suche nach der besten Annäherung. Id für die analytische Lösung glücklich sein, ob es für oder ist. Wie konnten diese Optimierungsprobleme nur mit der 1. Ordnung IIR gelöst werden. (1 - alpha) yn - 1 genau ndash Es ist verpflichtet, eine sehr schlechte Annäherung zu werden. Can39t Sie leisten, alles, was mehr als ein First-Order IIR ndash leftaroundover Okt 6 11 at 13:42 Vielleicht möchten Sie Ihre Frage bearbeiten, so dass Sie don39t verwenden yn zwei verschiedene Dinge bedeuten, z. Könnte die zweite angezeigte Gleichung zn frac xn cdots frac xn-k1 lesen, und Sie könnten sagen, was genau ist Ihr Kriterium der Quoten gut als möglichequot z. B. Wollen Sie vert yn - znvert so klein wie möglich für alle n, oder vert yn - znvert2 so klein wie möglich für alle n sein. Ndaren Dilip Sarwate Ich weiß, das ist ein alter Post so, wenn Sie sich erinnern können: wie ist Ihre Funktion 39f39 abgeleitet I39ve codiert eine ähnliche Sache, aber mit den komplexen Übertragungsfunktionen für FIR (H1) und IIR (H2 ) Und dann Summe (abs (H1 - H2) 2). I39ve verglichen dieses mit Ihrer Summe (fj), aber erhalten unterschiedliche resultierende Ausgänge. Dachte, ich würde vor dem Pflügen durch die Mathematik fragen. (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 1 ampamp alpha xn (1 - alpha) alpha xn - 1 (1 - alpha) 2 yn - 2 ampamp alpha xn (1 - alpha) alpha xn-1 (1 - alpha) 2 alpha xn-2 (1 - alpha) 3 yn - 3 Ende, so daß der Koeffizient von xn-m alpha (1-alpha) m ist . Der nächste Schritt ist, Derivate zu nehmen und gleich Null zu sein. Betrachtet man ein Plot des abgeleiteten J für K 1000 und Alpha von 0 bis 1, sieht es aus wie das Problem (wie Ive es aufgestellt) ist schlecht gestellt, weil die beste Antwort ist Alpha 0. Ich denke, Theres ein Fehler hier. Die Art und Weise sollte es nach meinen Berechnungen sein: Mit dem folgenden Code auf MATLAB ergibt etwas Äquivalentes zwar unterschiedlich: Jedenfalls haben diese Funktionen Minimum. So können wir annehmen, dass wir uns nur um die Annäherung über die Unterstützung (Länge) des FIR-Filters kümmern. In diesem Fall ist das Optimierungsproblem genau: J2 (alpha) sum (alpha (1-alpha) m - frac) 2 Das Plotten J2 (alpha) für verschiedene Werte von K versus alpha ergibt das Datum in den Diagrammen und der Tabelle unten. Für K 8. alpha 0,1533333 für K 16. alpha 0,08 für K 24. alpha 0,0533333 für K 32. alpha 0,04 für K 40. alpha 0,0333333 für K 48. alpha 0,0266667 für K 56. alpha 0,0233333 für K 64. alpha 0,02 für K 72. alpha 0.0166667 Die roten gestrichelten Linien sind 1 K und die grünen Linien alpha, der Wert von alpha, der J2 (alpha) minimiert (ausgewählt unter tt alpha 0: 0,01: 1 3). Theres eine nette Diskussion dieses Problems in der eingebetteten Signalverarbeitung mit der Mikrosignalarchitektur. Etwa auf den Seiten 63 und 69. Auf Seite 63 ist eine Ableitung des exakten rekursiven gleitenden Durchschnittsfilters (die niaren in seiner Antwort gegeben hat) enthalten. Zur Bequemlichkeit in Bezug auf die folgende Diskussion entspricht sie der folgenden Differenzengleichung: Die Näherung Die den Filter in die von Ihnen angegebene Form bringt, vorausgesetzt, dass x approx y, weil (und ich zitiere aus S. 68) y der Mittelwert von xn Proben ist. Diese Approximation erlaubt es uns, die vorstehende Differenzengleichung wie folgt zu vereinfachen: Einstellen von alpha, erhalten wir zu Ihrer ursprünglichen Form y alpha xn (1-alpha) y, was zeigt, dass der Koeffizient, den Sie (in Bezug auf diese Approximation) genau 1over haben wollen (Wobei N die Anzahl der Proben ist). Ist diese Annäherung die beste in irgendeiner Hinsicht Seine sicherlich elegant. Heres, wie sich die Amplitudenreaktion bei 44,1 kHz für N 3 vergleicht und wenn N auf 10 erhöht wird (Approximation in blau): Wie aus der Peters-Antwort hervorgeht, kann die Annäherung eines FIR-Filters mit einem rekursiven Filter unter einer Kleinste-Quadrate-Norm problematisch sein. Eine ausführliche Diskussion darüber, wie dieses Problem im Allgemeinen gelöst werden kann, finden Sie in JOSs These, Techniken für Digitalfilter Design und System Identifikation mit Anwendung auf die Violine. Er befürwortet die Verwendung der Hankel-Norm, aber in Fällen, in denen die Phasenreaktion keine Rolle spielt, deckt er auch die Kopecs-Methode ab, die in diesem Fall gut funktionieren könnte (und eine L2-Norm verwendet). Einen breiten Überblick über die Techniken in der Arbeit finden Sie hier. Sie können andere interessante Approximationen liefern. Erstellen Sie einen gleitenden Durchschnitt Filter Moving Average Filter ermöglicht es Ihnen, eine oder doppelseitige Reihe von Mitteln auf der Grundlage einer benutzerdefinierten Fensterlänge zu berechnen. Das Modul fügt dem Dataset dann eine neue Merkmalsspalte hinzu. Der resultierende gleitende Durchschnitt kann dann für das Plotten und die Visualisierung, eine Basislinie für die Modellierung, die Vorhersage, die Berechnung von Varianzen gegen die Berechnung für ähnliche Perioden usw. verwendet werden. Für das Streaming-Szenario können kumulative und gewichtete gleitende Durchschnittswerte verwendet werden. Der kumulative gleitende Durchschnitt berücksichtigt die Punkte, die jene Punkte überschreiten, die für die aktuelle Periode eintreffen. Dieses Modul hilft Ihnen, nützliche zeitliche Muster sowohl in retrospektiven als auch in Echtzeit darzustellen und zu prognostizieren. Sie verwenden sie mit dem Modul "Filter anwenden". Dieses Modul erwartet folgende Eingabeparameter: Filter höherer Ordnung bieten ein größeres Berechnungsfenster und eine nähere Annäherung der Trendlinie. Filter mit niedrigerer Ordnung verwenden ein kleineres Berechnungsfenster und ähneln stärker den Originaldaten. Die Art der gleitenden Durchschnitt anzuwenden. Beispiele finden Sie in der folgenden Tabelle. ML Studio bietet die folgenden Möglichkeiten, einen gleitenden Durchschnitt zu definieren:


No comments:

Post a Comment